您现在的位置是:首页 > 众测

砼在低温的力学能?在零下60度低温的力学性能

vcbgfh8RQW 2024-04-28

一、高温合金GH3039***在零下60度低温的力学性能

一、概述

GH39为单相奥氏体型固溶强化合金,在800℃以下具有中等的热强性和良好的热疲劳性能,1000℃以下抗氧化性能良好。长期使用组织稳定,还具有良好的冷成形性和焊接性能。适宜于850℃以下长期使用的航空发动机燃烧室和加力燃烧室零部件。该合金可以生产板材、棒材、丝材、管材和锻件。

1.1 GH39材料牌号GH3039

1.2 GH39相近牌号ЭИ602,ХН75МБГЮ(俄罗斯)

1.3 GH39材料的技术标准

GJB 1952-1994《航空用高温合金冷轧薄板规范》

GJB 2297-1995《航空用高温合金冷拔(轧)无缝管规范》

GJB 2612-1996《航空用高温合金冷拉丝材规范》

GJB 3165-1998《航空承力件用高温合金热轧和锻制棒材规范》

GJB 3317-1998《航空用高温合金热轧板规范》

GJB 3318-1998《航空用高温合金冷轧带材规范》

GB/T15062-1994《一般用途高温合金管》

1.4 GH39化学成分见表1-1。

1.5 GH39热处理制度热轧及冷轧板材和带材固溶处理:1050~1090℃,空冷。棒材及管材固溶处理:1050~1080℃,空冷或水冷。

1.6 GH39品种规格和供应状态可以供应各种规格的热轧板、冷轧板、带材、棒材、丝材、管材、和锻件。板材、带材和管材固溶处理和酸洗后交货。丝材于冷加工状态或固溶状态供应棒材不热处理交货。

1.7GH39熔炼和铸造工艺合金采用电弧炉熔炼、电弧炉或非真空感应炉加电渣重熔或真空电弧重熔以及真空感应炉加电渣或真空电弧重熔工艺。

1.8GH39应用概况与特殊要求用该合金材制作的航空发动机燃烧室及加力燃烧室零部件,经过长期的生产和使用考验,使用性能良好。

二、GH39物理及化学性能

2.1 GH39热性能

2.1.1 GH39热导率见表2-1。

2.2GH39密度ρ=8.3g/cm3。

2.3GH39电性能室温电阻率ρ=1.18×10-6Ω·m。

2.4GH39磁性能合金无磁性。

2.5GH39化学性能

2.5.1GH39抗氧化性能

2.5.1.1GH39在空气介质中经100h试验后的氧化速率见表2-4。

四、GH39组织结构

4.1相变温度

4.2时间-温度-组织转变曲线

4.3合金组织结构

4.3.1合金固溶状态为单相奥氏体,并含有少量的Ti(CN)、NbC及M32C6碳化物。经600~900℃长期时效或使用后,有M32C6型碳化物析出,600~700℃时效后析出的碳化物颗粒细小,均匀分布于晶内和晶界,时效温度高于700℃时,主要沿晶界析出并聚集长大。合金中不形成有害相,组织稳定性较好。

4.3.2冷轧薄板标准规定,供应状态晶粒度的要求为5~8级。

五、GH39工艺性能与要求

5.1成型性能

5.1.1锻造合金具有良好的热加工工艺塑性,变形性能良好。锻造加热温度1170~1190℃,终锻温度不低于900℃,一次加热的变形量为50%。

5.1.2轧制板材荒轧温度1100~1140℃,精轧温度1050~1100℃,终轧温度不低于850℃。经电渣或真空自耗重熔的合金轧制时,精轧温度应稍低于电弧炉熔炼的合金。热轧终轧道次变形量应不低于13%,薄板冷轧变形量30%~55%。

5.1.3冲压性能供应状态薄板具有良好的冲压习惯你能,冲压的极限系数见表5-1,一般工作系数为极限系数的80%~90%。供应状态δ1.5mm薄板反复弯压至断裂次数为20~29次;杯突试验深度为10.7~12.0mm。δ8.5mm热轧中板经深冲后应立即(不得超过12h)进行中间固溶处理,以消除应力。

5.2.2焊接接头力学性能见表5-6。

5.3零件热处理工艺零件的中间固溶热处理温度为1050℃,空冷;燃烧室零件的最终热处理温度为1080℃,空冷。要求之久性能较高的零件,固溶温度可提高至1170℃。零件在固溶热

处理时的保温时间可根据厚度选择5~20min。

表面处理工艺

5.4.1零件热处理后的表面氧化皮,可用吹沙或酸洗方法清除。

该合金制燃烧室部件,可在H3PO4-H2SO4-H2O溶液中电解抛光,以改善表面光洁度和使用性能。

二、哪里可以做测试金属低温下力学性能的实验

一般做低温实验,就现有的设备来说,拉伸和弯曲很难做到,普通来说只做低温冲击实验,-20、-40、-45、-50℃。

材料的力学性能是指材料在不同环境(温度、介质、湿度)下,承受各种外加载荷(拉伸、压缩、弯曲、扭转、冲击、交变应力等)时所表现出的力学特征。

1.脆性脆性是指材料在损坏之前没有发生塑性变形的一种特性。它与韧性和塑性相反。脆性材料没有屈服点,有断裂强度和极限强度,并且二者几乎一样。铸铁、陶瓷、混凝土及石头都是脆性材料。与其他许多工程材料相比,脆性材料在拉伸方面的性能较弱,对脆性材料通常采用压缩试验进行评定。

2.强度:金属材料在静载荷作用下抵抗永久变形或断裂的能力.同时,它也可以定义为比例极限、屈服强度、断裂强度或极限强度。没有一个确切的单一参数能够准确定义这个特性。因为金属的行为随着应力种类的变化和它应用形式的变化而变化。强度是一个很常用的术语。

3.塑性:金属材料在载荷作用下产生永久变形而不破坏的能力.塑性变形发生在金属材料承受的应力超过弹性极限并且载荷去除之后,此时材料保留了一部分或全部载荷时的变形.

4.硬度:金属材料表面抵抗比他更硬的物体压入的能力

5.韧性:金属材料抵抗冲击载荷而不被破坏的能力.韧性是指金属材料在拉应力的作用下,在发生断裂前有一定塑性变形的特性。金、铝、铜是韧性材料,它们很容易被拉成导线。

6.疲劳强度:材料零件和结构零件对疲劳破坏的抗力

7.弹性弹性是指金属材料在外力消失时,能使材料恢复原先尺寸的一种特性。钢材在到达弹性极限前是弹性的。

8.延展性延展性是指材料在拉应力或压应力的作用下,材料断裂前承受一定塑性变形的特性。塑性材料一般使用轧制和锻造工艺。钢材既是塑性的也是具有延展性的。

9.刚性刚性是金属材料承受较高应力而没有发生很大应变的特性。刚性的大小通过测量材料的弹性模量E来评价。

10.屈服点或屈服应力屈服点或屈服应力是金属的应力水平,用MPa度量。在屈服点以上,当外来载荷撤除后,金属的变形仍然存在,金属材料发生了塑性变形。

文章版权声明:除非注明,否则均为典胜网原创文章,转载或复制请以超链接形式并注明出处。